Platinum Carbonyl Complexes

T. Theophanides and P.C. Kong*

Received December 14, 1970

The synthesis, characterization and i.r. spectra of platinum(II) carbonyl complexes with bridging ethylenediamine and its N-alkyl derivatives having the formula, $(Pt(CO)X^2)_2$ en, where $en = H_2NCH_2CH_2NH_2$ and X = Cl, Br are described.

Introduction

Platinum carbonyl complexes are the oldest metal carbonyl compounds. P. Schützenberger¹ one hundred years ago first reported platinum carbonyl complexes and the reaction of ammonia with the dichloro platinum(II) carbonyl, $Pt(CO)_2Cl_2$. Synthesis and infrared studies have been reported,^{2,3a,b} and recently Orchin and his co-workers have described olefin and carbonyl platinum complexes and examined their i.r. and n.m.r. spectra.3c

In the present paper the synthesis of bridging dinuclear carbonyl compounds and their reactions and infrared spectra are reported. The infrared spectra of the dinuclear compounds can be interpreted in terms of simpler monomers characteristic of the units from which they are built up. For instance, the i.r. spectrum of (CO)X₂Pt(NH₂CH₂CH₂NH₂)PtX₂(CO) is made up of two equivalent units of PtX₂(CO) and ethylenediamine. We will discuss the i.r. spectra and the structures of ethylenediamine bridging compounds by comparing them with simpler analogs of platinum carbonyl compounds, such as $[PtCl_3(CO)]^-$ and cisor trans- $[PtCl_2(NH_3)(CO)]$.^{4,5,6} The spectra are interpreted in terms of ethylenediamine and PtX2CO units separately, or as Pt(NH₂CH₂CH₂NH₂)Pt and PtX₂(CO) units.

Results and Discussion

The dinuclear carbonyl complexes are obtained by reacting the analogous platinum(II) acetylene⁷ or ethyl-

Chim., 14, 17 (1870); Ann. Chim. Phys., 21, 350 (1870); J. pr. Ch., 4, 159 (1871).
(2) J. Chatt, J. Chem. Soc., 652 (1951).
(3) a) R.J. Irving and E.A. Magnusson, J. Chem. Soc., 1860 (1956); idem 2283 (1958); (b) L. Malatesta and L. Naldini, Gazz. Chim. Ital., 90 [XI], 1505 (1960); (c) M. Orchin and P.J. Schmidt, Inorg. Chim. Acta Rev., 2, 123 (1968); Coordination Chem. Rev., 3, 345 (1968); J. Am. Chem. Soc., 92, 1078 (1970).
(4) R.G. Denning and M.J. Ware, Spectrochim. Acta, 24A, 1785 (1968);

(4) R.G. Denning and M.J. Wate, open-communication, and M.M. Orlova, (1968).
(5) L.A. Gribov, A.D. Gel'man, F.A. Zakharova, and M.M. Orlova, *Russ. J. Inorg. Chem.*, 5, 473 (1960).
(6) Vito Balice, Master thesis, University of Montreal 1969, to be Nitoday.

published.

ene⁸ complexes with carbon monoxide, according to the following reaction:

where, $L = (CH_3)_2 C(OH) C = CC(OH)(CH_3)_2$ or C_2H_4 and the bridge is either ethylenediamine and its derivatives or 4,4-dipyridyl.

The new compounds are obtained in high yields (80%).

The complexes are stable thermally, but quickly decompose in water. They are soluble in acetone, tetrahydrofuran and alcohol, but decompose slightly on standing.

Reaction (1) is taking place in anhydrous ether. (PtLX₂)₂en (1 to 2 mmoles) in 80 ml ether at room temperature is stirred, and carbon monoxide is bubbled through the solution. The complexes then are washed with dry ether and dried over P2O5.

The infrared spectra of the compounds support a trans-configuration for ethylenediamine in the complexes with a C_{2h} symmetry.⁹ Similar results were obtained for the complexes: $(Pt(C_2H_4)Cl_2)_{2en}$,¹⁰ [Hg-(en)Cl₂]_∞,¹¹ and Cd(en)M'(CN)₄. 2C₆H₅,¹² where M'= Ni, Pd. A survey i.r. spectrum of the chloro-derivative, $(Pt(CO)Cl_2)_2$ en is shown in Figure 1. The i.r. spectra are simple and the bands are assigned separately to the ethylenediamine molecule and the unit PtCl₂CO (see Table I). The assignments are made on the basis of i.r. spectra, and on Raman spectra of

Figure 1. Survey i.r. spectrum of (Pt(CO)Cl₂en.

(7) P.C. Kong and T. Theophanides, Can. J. Chem., 45, 3193 (1967).
(8) A.D. Gelman and E.A. Meilakh, Compt. Rend. Acad. Sci., USSR, 51, 207 (1946).

Present address, Department of chemistry, Washington State University, Pullman, Washington 99163 U.S.A.
 (1) P. Schützenberger, Compt. Rend., 70, 1134 (1870); Bull. Soc. Chim., 14, 17 (1870); Ann. Chim. Phys., 21, 350 (1870); J. pr. Ch., 4,

486

Table	Ι.	i.r.	Foundamental	bands	and	assignments	of	$(Pt(COCl_2)_2en.$
-------	----	------	--------------	-------	-----	-------------	----	--------------------

	Number	Species	Frequency in cm ⁻¹	Assignment
	ν ₁	Au	3200vs (1.36)	NH ₂ sym. str.
	ν ₂		2921vw	CH ₂ asym. str.
	V 3		1312w	CH ₂ twist.
	₩4		1206s (1.35)	NH ₂ twist.
	V5		877m	CH ₂ rock.
	ν_{6}		687 (1.37)	NH₂ rock
Pt(en)Pt	V7 Ve	475m	C-N trs.	
trans-ethylenediamine		174m	C-C trs.	
total modes:	V9	Bu	3245vs (1.34)	NH ₂ asym. str.
$14 \times 3 - 6 = 36$	ν_{10}		2964w	CH ₂ sym. str.
i.r. active, 18	ν_{11}		1563vs (1.34)	NH ₂ bend.
(8Au + 10Bu)	Vis		1464m	CH₂ bend.
	V ₁₃		1367m	CH ₂ wag.
	V14		1296m (1.32)	NH_2 wag.
	V15		1053vs	CN str.
	∇_{16}		516m	°Pt-N
	V17			PtNC bend.
	Vis		475	NCC bend.
PtCl ₂ CO unit	V19	Au	318m	Pt-Cl sym. str.
à2PtCl ₂ CO	V ₂₀		197vs	Cl Pt Cl bend.
total modes $10 \times 3 - 6 = 24$	V ₂₁			N Pt Cl bend.
i.r. active 12	V22		213m	C Pt Cl bend.
(5Au + 7 Bu)	V23		516m (1.03)	Pt-N str.
	VN	Bu	536s	Pt-C str.
	V25		2144vs	C≡O str.
	V26		495s	PtCO bend.
	V ₂₇		344vs	Pt-Cl asym. str.
	V28		253m	NPtCl bend.
	V ₂₉		220sh	NPtC bend.
	V ₃₀		288m	CPtCl bend.

trs = torsion

Table II. Characteristic infrared band assignments in the region 600-200 cm⁻¹.

Compound	VPt-C	V _{Pt-N}	δ _{Pt-CO}		V _{Pt-Cl}	VPt-Br
$((CO)PtCl_2)_2 en((CO)PtCl_2)_2 en^*$	536ms 535s	516m 520s	466s,450w 465s,450m		344s,318m 350vs,317 s	
$((CO)PtCl_2)_2$ en D ₄ $((CO)PtBr_2)_2$ en	536s 549m	50/m 519s	4/5m,445s 465vs,455sh		348s,31/m	245s,225ms
((CO)PtCl ₂), en H ₂ (CH ₃) ₂ ((CO)PtCl ₂) ₂ en D ₂ (CH ₃) ₂ ((CO)PtCl ₂ en(CH ₃), ((CO)PtCl ₂) ₂ 4,4-dipy Pt(CO)Cl(8-hydroxyquinolinato)	530s 530s 542s 542s 551s	515m 506m 520m,505m 503m 505m	476s,443m 476s,440m 490m,468m 463s 474m	400(Pt-O)	346vs,315s 347vs,315s 344vs,338vs 360vs,334s 350vs,330s	

* spectrum taken at 90°K.

the [PtCl₃(CO)]⁻ ion reported by Denning and Ware.⁴ The assignments are also supported by an approximate force constants calculation⁶ of the mononuclear complex trans-[$PtCl_2(CO)NH_3$].

The bridging complexes $(PtX_2(CO))_2$ en have $22 \times$ 3-6=60 fundamental vibrations (18 Ag+12 Bg+ 13 Au+17 Bu) of which only 30 are i.r. active (13 Au + 17 Bu)). Ethylenediamine alone has $12 \times 3-6 =$ 30 fundamental vibrations and in the trans-isomer only 15 vibrations are active in infrared (7 Au+8 Bu). The two $(PtX_2(CO))_2$ units have $10 \times 3-6=24$ fundamental vibrations with twelve i.r. active (5 Au +7Bu). By coordination of the ethylenediamine molecule with the PtX₂CO units six new vibrations are formed of which only three are i.r. active (Au+2 Bu),

 v_{16} , v_{17} , v_{18} . The ethylenediamine molecule could also be considered as being attached to two metal atoms¹² with 36 fundamental vibrations (18 i.r. active) and two units 2(PtX₂CO) with 24 fundamental vibrations of which twelve are i.r. active (see Table I).

The characteristic group frequencies for these complexes in the low frequency region are given in Table II. Stretching frequencies for Pt-C, Pt-N, Pt-Cl, and Pt-Br are given. The assignment of platinumcarbon stretching and platinum-carbon bending vibrations agree with those of Denning and Ware.

The high $v(C \equiv O)$ and the sharp decrease of $\delta PtCO$ in the anion [Pt(CO)Cl₃]⁻ have been explained⁴ as being consistent with a greater contribution of the valence form Pt-C=O over the resonance form Pt=C=O. The high oxidation state of platinum (Pt²⁺) favors a stronger σ bond and the negative charge does not tend to be redistributed to the π^* orbitals of CO via π back donation. This is consistent with the high v(CO) and the lowering of $\delta PtCO$. The high

- (9) P.C. Kong and T. Theophanides, Can. J. Spectrosc., 14, 105 (1969).
 - (10) D.B. Powell and N. Sheppard, J. Chem. Soc., 3089 (1959).
 (11) K. Brodersen, Z. anorg. und allgem. chem., 298, 142 (1959).
 (12) T. Iwamoto, Inorg. Chim. Acta, 2, 269 (1968).

 ν (Pt-C) is also in agreement with results of normal coordinate calculations⁶ on *trans*-Pt(CO)(NH₃)Cl₂ in which the force constant of Pt-C bond is found to be 3.8×10^5 dyne/cm.

Gribov and co-workers⁵ have calculated a Pt–C bond force constant of 3.5×10^5 dyne/cm in the same molecule, but they rejected this value, because it appeared improbable at that time, due to the high frequency of v(CO). Borine carbonyl¹³ H₃BCO, with only a σ bond shows a higher v(CO) frequency than the free carbuyl¹⁴ molecule (CO;2143 cm⁻¹, H₃BCO; 2166 cm⁻¹) indicating that the effect of σ donor alone increases the v(CO).

The assigniments of Pt-N stretching, NPtC and NPtCl bending modes are in agreement with the results of Denning and Ware and they are supported by the deuteration of the amino groups. The ClPtCl bending mode was confirmed by comparing the spectra of the chloro and bromo derivatives.

The $vC \equiv O$) absorptions are easily identified in the 2100 cm⁻¹ region (see Figure 1 and Table III). In Table I only the high frequency band is reported for v(CO).

The infrared spectra of the solid complexes show two strong and two weak bands in the region 2100 cm^{-1} (see Table III). The weak bands may be due to ¹³CO stretching modes shifted by 50-35 cm^{-1} to lower frequencies from the strongest fundamental band. The crystal splitting of the strong carbonyl band is not shown in chloroform or carbon tetrachloride solutions for the Pt(CO)Cl (8-hydroxyquinolinato) complex, prepared by the same method (1) from Pt(C₂H₄)Cl(8-hydroxyquinolinato). One strong band is observed in this case accompanied by the weak ¹³CO absorption. This presumably indicates that the splitting is due to crystal effects.

Tal	ble	111. '	The	infrared	v(CO)	absorptions	of	the	comp	lexes
in	the	solic	l sta	ite.						

Compound a	Frequency cm^{-1} $v_{c=0}$
(Pt(CO)Cl ₂) ₂ en	2144 vs
	2109 VS 2093 VW
	2055 VW 2067 W
$(Pt(CO)Cl_2)_2 enH_2Me_2$	2133 vs
	2123 vs
(Pt(CO)Cl ₂) ₂ en Me ₄	2124 vs
• • • • •	2099 vs
	2045 w
$(Pt(CO)Br_2)_2 en$	2059 w
	2108 vs
	2059 w
$(Pt(CO)Cl_2)_24,4-dipy$	2148 vs
	2084 w
(Pt(CO)Cl(8-hydroxyquinolinato)	2142 vs 2125 vs ^b
	2110 vs
	2108 vw
	2062 vw 2076 vw ^b

^a en: NH₂(CH₂)₂NH₂, en H₂Me₂: CH₃HN(CH₂)₂NHCH₃, enMe₄: (CH₃)₂N(CH₂)₂N(CH₃)₂. ^b in CHCl₃ or CCl₄ two bands only were observed. s: strong, vs: very strong, m: medium, w: weak, vw: very weak.

(13) George W. Bethke and M. Kent Wilson, J. Chem. Phys., 26, 1118 (1957).
(14) G. Herzberg, Spectra of diatomic molecules, D. Van Nostrand Reinhold Co. Princeton, New York, N.Y. 10001, pp. 62.

Decomposition of the Complexes. The dinuclear carbonyl complexes hydrolyse in a similar manner to mononuclear and halogen-bridging complexes:

 $Pt(CO)Cl_{3}^{-} + H_{2}O = CO_{2} + 2HCl + Pt + Ci^{-}$ $(Pt(CO)Cl_{2})_{2} + 2H_{2}O = 2CO_{2} + 4HCl + 2Pt$ $(Pt(CO)Cl_{2})_{2}en + 2H_{2}O = 2CO_{2} + 4HCl + 2Pt + en$

Hydrolysis is prevented by the addition of chloride ions to the solutions. The reactions of decomposition by heat are complicated. During the thermal decomposition there is liberation of carbon monoxide and carbon dioxide, in various relative amounts depending on the temperature.^{3a} It is difficult to compare the Pt–C and Pt–N bond strengths. However, carbon monoxide is liberated first during decomposition followed by ethelenediamine. These species have been detected by i.r. spectroscopy in the gas phase after decomposition, carbon monoxide being observed first.

The complexes all decomposed sharlpy and lost carbon monoxide. The chloro-complexes are not thermally more stable than the corresponding bromo-complexes, as it is in the case with the halogeno-carbonyl complexes.^{3a,15}

Methyl iodide, CH_3I did not react at all with the complexes in alcohol or acetone solutions at room temperature.

Experimental Section

The infrared spectra in the region 4000-200 cm⁻¹ were obtained in Nujol mulls in KBr or CsI discs with a Perkin-Elmer 621 Spectrometer calibrated with a polystyrene film, CO_2 and H_2O vapors. The region 250-50 cm⁻¹ was examined with a Berkman IR 11 spectrometer. Microanalyses were carried out by Dr. C. Daesslé, Montréal, Québec, Canada.

Bis(carbonyl)tetrachloro- μ -ethylenediamine platinate(11). Cl₂(CO)Pt(NH₂(CH₂)₂NH₂)Pt(CO)Cl₂. 0.2 g of (Pt(ac)Cl₂)₂en (7) were ground and added to anhydrous ether (80 ml). The suspension was agitated with a high speed magnetic stirrer at room temperature. Carbon monoxide gas was bubbled through the suspension until the solution became colorless (about forty minutes). The solution was then filtered, evaporated to dryness and the residue was washed with ether to yield a yellow-greenish powder. Melting point with decomposition 220°C.

Analysis Calcd. for $Cl_2(CO)Pt(NH_2(CH_2)_2NH_2)Pt(CO)Cl_2$: C, 7.41; H, 1.23; N, 4.32; Pt, 60.19. Found: C, 7.97; H, 1.70; N, 4.80; Pt, 58.80.

Bis(carbonyl)tetrachloro- μ -N,N'-dimethylenediamine-platinate(II), Cl₂(CO)Pt(NHCH₃(CH₂)₂CH₃HN)-Pt(CO)Cl₂. The compound was prepared as above from (Pt(ac)Cl₂)₂enH₂Me₂. Yellow crystals were obtained which melted with decomposition at 170°C. Analysis. Calcd for: Cl₂(CO)Pt(NHCH₃(CH₂(CH₂)₂-HN)PtCOCl₂: C, 10.16; H, 1.77; N, 4.14; Pt, 57.60. Found: C, 10.37; H, 1.92; N, 4.01; Pt, 57.75.

(15 J. Chatt, N.P. Johnson, and B.L. Shaw, J. Chem. Soc., 1662 (1964).

Bis(carbonyl)tetrachloro- μ -N,N',N,N'-tetramethylenediamineplatinate(II), Cl₂(CO)Pt(N(CH₃)₂(CH₂)₂N-(CH₃)₂Pt(CO)Cl₂. The compound was prepared from (Pt(ac)Cl₂)₂enMe₄. Light yellow crystals were obtained which decomposed at 144°C.

Analysis Calcd for $Cl_2(CO)Pt(CH_3)_2N(CH_2)_2(CH_3)_2$)-Pt(CO)Cl₂: C, 13.64; H, 2.27; N, 3.98; Cl, 20.17; Pt, 55.40. Found: C, 13.97; H, 2.59; N, 4.11; Cl, 19.95; Pt, 55.40.

Bis(carbonyl)tetrabromo- μ -ethylenediamineplatinate(II), Br₂(CO)Pt(NH₂(CH₂)₂NH₂)Pt(CO)Br₂. This compound was prepared from (Pt(ac)Br₂)₂en. Yellow crystals. Melting point with decomposition 190°C. Analysis Calcd for Br₂(CO)Pt(NH₂(CH₂)₂NH₂)Pt -(CO)Br₂: C, 5.81; H, 0.97; N, 3.39; Br, 38.70; Pt, 47.22. Found: C, 6.10; H, 1.21; N, 3.36; Br, 39.10; Pt, 47.13. Bis(carbonyl)tetrachloro- μ -4,4-dipyridylplatinate-(11), Cl₂(CO)Pt(N N)Pt(CO)Cl₂. The _ complex was prepared from (Pt(C₂H₄)Cl₂)₂(4',4'-dipy) using the above method of bubbling carbon monoxide through a suspension of the platinum ethelene complex in ether. The (Pt(C₂H₄)Cl)₂(4,4'-dipy) complex was prepared from Zeise's salt. A solution of K[Pt(C₂H₄)Cl₃], 0.3-0.5 g in 10 ml cold water was first prepared. To this solution 4,4'-dipy was added dropwise and by stirring the solution. A yellow precipitate was immediately formed. This was washed with cold water and dried over CaCl₂ in a desiccator under vacuum. The analysis for platinum and chlorine was correct.

Acknowledgment. We wish to thank the National Research Council of Canada for financial assistance.